metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

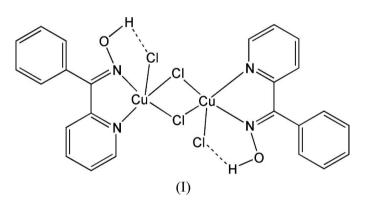
Jing Xiang,* Qin Li and Ping Mei

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, People's Republic of China

Correspondence e-mail: g_jingx@stu.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.043 wR factor = 0.113 Data-to-parameter ratio = 18.5


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -chloro-bis[chloro(phenyl 2-pyridyl ketone oxime- $\kappa^2 N, N'$)copper(II)]

The title complex, $[Cu_2Cl_4(C_{12}H_{10}N_2O)_2]$, was synthesized by reacting phenyl 2-pyridyl ketone oxime with $CuCl_2 \cdot 2H_2O$ in a basic medium. The organic ligand coordinates to the Cu^{II} ions through its N atoms, while the oxime O atom remains uncoordinated. The Cl^- ions play two roles: one is a terminal ligand and the other is a bridging ligand, the bridge being formed through a crystallographic inversion centre.

Comment

The ligand phenyl 2-pyridyl ketone oxime (*L*1; Taga *et al.*, 1990) is of particular interest for the synthesis of metal– organic complexes, as the hydroxyl group may be deprotonated (Milios *et al.*, 2003). The title compound, (I), is a dinuclear Cu^{II} complex, formulated as $Cu_2(L1)_2Cl_4$. It was synthesized in a basic NaOH medium (see *Experimental*) and its X-ray crystal structure determined.

In compound (I), L1 acts as a bidentate chelating ligand. The asymmetric unit contains a monomeric CuL1Cl₂ moiety with an inversion centre at the mid-point of the Cu···Cu vector. Monomeric units are linked through a long Cu–Cl1 bond (Fig. 1 and Table 1). The resulting coordination geometry for the metallic centre is a distorted square pyramid, with atoms N1, N2, Cl2 and Cl1ⁱ forming the base of the pyramid and atom Cl1 occupying the apical position [symmetry code: (i) -x, 1 - y, -z]. The L1 ligand is bidentate through its pyridine and imine N atoms, while atom O1 does not participate in the coordination. The Cu1–N1 bond is slightly shorter than Cu1–N2 (Table 1). The C1–C6 phenyl ring forms a dihedral angle of 51.9 (1)° with the non-H atoms of the pyridyl/oxime/CuCl₂ group (O1/N1/N2/C7–C12/Cu1/ Cl1ⁱ/Cl2).

The central $(\mu_2$ -Cl)₂Cu₂ four-membered ring is planar by symmetry and the metal···metal separation is 3.442 (1) Å. The OH group forms a short intramolecular hydrogen bond

© 2006 International Union of Crystallography All rights reserved Received 18 July 2006 Accepted 23 August 2006 with atom Cl2 (Table 2), giving a five-membered ring, Cu1/N1/ O1/H1/Cl2 (Fig. 1).

Experimental

The ligand L1 was synthesized according to a reported procedure, as yellow block crystals (Taga et al., 1990). Treatment of a methanolic solution (30 ml) of copper chloride dihydrate (2 mmol, 0.34 g) and L1 (2 mmol, 0.39 g) in the presence of NaOH (4 mmol) led to dark-green block crystals of (I) suitable for X-ray crystal structure analysis. Analysis, found: C 43.26, H 3.10, N 8.50%; calculated for C₂₄H₂₀Cl₄Cu₂N₄O₂: C 43.32, H 3.03, N 8.42%.

Z = 2

 $D_x = 1.676 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, dark green

 $0.32 \times 0.26 \times 0.20 \text{ mm}$

8038 measured reflections

3010 independent reflections 2569 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0569P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.7387P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

 $\mu = 2.05 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int} = 0.022$

 $\theta_{\rm max} = 27.9^\circ$

Crvstal data

 $[Cu_2Cl_4(C_{12}H_{10}N_2O)_2]$ $M_{\rm w} = 665.34$ Monoclinic, $P2_1/c$ a = 103137(14) Å b = 13.8137 (18) Å c = 9.4334 (13) Å $\beta = 101.218 (2)^{\circ}$ V = 1318.3 (3) Å³

Data collection

Bruker APEX area-dectector diffractometer ω and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\rm min} = 0.533, T_{\rm max} = 0.664$

Refinement

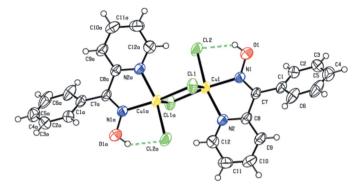

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ wR(F²) = 0.113 S = 1.083010 reflections 163 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	2.001 (2)	Cu1-Cl2	2.2620 (9)
Cu1-N2	2.027 (2)	Cu1-Cl1	2.6977 (9)
Cu1-Cl1 ⁱ	2.2513 (8)		
N1-Cu1-N2	78.15 (10)	Cl1 ⁱ -Cu1-Cl2	94.76 (3)
N1-Cu1-Cl1 ⁱ	171.11 (8)	N1-Cu1-Cl1	94.91 (8)
N2-Cu1-Cl1 ⁱ	96.46 (8)	N2-Cu1-Cl1	92.62 (7)
N1-Cu1-Cl2	89.25 (7)	Cl1 ⁱ -Cu1-Cl1	92.37 (3)
N2-Cu1-Cl2	164.09 (7)	Cl2-Cu1-Cl1	98.16 (3)

Symmetry code: (i) -x, -y + 1, -z.

Figure 1

A plot of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. Atoms labelled with the suffix a are at the symmetry position (-x, 1 - y, -z).

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···Cl2	0.82	2.32	2.954 (3)	135

H atoms were placed in calculated positions and included in the refinement using a riding-model approximation, with C-H = 0.93 Å and O-H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank WuHan University for X-ray Analysis and the Research Foundation of the Education Department of Guangdong Province for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Milios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Vicente, R., Lalioti, N., Escuer, A. & Perlepes, S. P. (2003). Chem. Commun. pp. 819-821.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Taga, T., Uchiyama, A., Machida, K. & Miyasaka, T. (1990). Acta Cryst. C46, 2241-2243.